Match each missing side length and angle with the correct value. Angle measurements are rounded to the nearest hundredth. 15 M LIE, 10 8 8 N 20 22 36.87 32.23° 12 28.07 53.13 17 6 LY MZNMY NM MZNLY Ehts reserved

SOLUTION
Now, let us split the triangle in the picture into two as shown below
Now from the diagram above, we can see the two right-angle triangles.
From the smaller triangle NLY, to find the side LY, we will use the Pythagorean theorem. From the Pythagorean theorem
[tex]\text{hypotenuse}^2=opposite^2+adjacent^2[/tex]From here we have that
[tex]\begin{gathered} |NL|^2=|NY|^2+|LY|^2 \\ 10^2=8^2+|LY|^2 \\ 100=64+|LY|^2 \\ |LY|^2=100-64 \\ |LY|^2=36 \\ \text{square root both sides } \\ \sqrt[]{|LY|^2}=\sqrt[]{36} \\ \text{square cancels square root, then } \\ |LY|=\sqrt[]{36} \\ |LY|=6 \end{gathered}[/tex]hence LY is 6
Also form the second triangle NMY, using Pythagoras theorem to find NM, we have that
[tex]\begin{gathered} |NM|^2=|NY|^2+|MY|^2 \\ |NM|^2=8^2+15^2 \\ |NM|^2=64+225 \\ |NM|^2=289 \\ \sqrt[]{|NM|^2}=\sqrt[]{289} \\ |NM|=\sqrt[]{289} \\ |NM|=17 \end{gathered}[/tex]Hence, NM = 17
We will use the trig ratio SOHCAHTOA to find angle NMY. NMY is the marked angle in the second triangle. So so using the sides 8 (opposite) and 15(adjacent) we have
[tex]\begin{gathered} \tan |NMY|=\frac{opposite}{\text{adjacent}} \\ \tan |NMY|=\frac{8}{\text{1}5} \\ \text{when tan moves to the other side it becomes tan}^{-1} \\ |NMY|=\text{tan}^{-1}\frac{8}{\text{1}5} \\ |NMY|=28.07^o \end{gathered}[/tex]Hence angle NMY = 28.07 degrees
In the first triangle to find angle NLY, using the hypotenuse 10 and the opposite 8, we have
[tex]\begin{gathered} \sin |\text{NLY}|=\frac{opposite\text{ }}{\text{hypotenuse}} \\ \sin |\text{NLY}|=\frac{8}{\text{1}0} \\ |\text{NLY}|=\sin ^{-1}\frac{8}{\text{1}0} \\ |\text{NLY}|=53.13^o \end{gathered}[/tex]Hence angle NLY = 53.13 degrees