Given:
Flying with the wind, a plane can fly 900 miles in 6 hours.
Let the speed of the plane = x
Let the speed of the wind = y
Speed = distance/time
So,
[tex]\begin{gathered} x+y=\frac{900}{6} \\ x+y=150\rightarrow(1) \end{gathered}[/tex]Against the wind, the plane can fly the same distance in 10 hours.
So,
[tex]\begin{gathered} x-y=\frac{900}{10} \\ x-y=90\rightarrow(2) \end{gathered}[/tex]Solving the equations (1) and (2):
[tex]\begin{gathered} x+y=150 \\ x-y=90 \\ ======= \\ 2x=240 \\ x=\frac{240}{2}=120 \\ y=150-x=150-120=30 \end{gathered}[/tex]So, the rate of the wind = 30 miles per hour