Respuesta :

Answer:

Option D is correct

[tex]left\text{ }\frac{\pi}{2}[/tex]

Explanations:

The standard formula for expressing cosine functions is given as:

[tex]y=cos(Bx+C)+D[/tex]

The phase shift is given as;

[tex]phase\text{ shift}=-\frac{c}{b}[/tex]

Given the function

[tex]\begin{gathered} y=-cos(3(x+\frac{\pi}{2}))-8 \\ y=-cos(3x+\frac{3\pi}{2})-8 \end{gathered}[/tex]

Compare with the general function

C = 3pi/2

B = 3

Find the phase shift

[tex]\begin{gathered} Phase\text{ shift}=\frac{-\frac{3\pi}{2}}{3} \\ Phase\text{ shift}=-\frac{3\pi}{6} \\ Phase\text{ shift}=-\frac{\pi}{2} \end{gathered}[/tex]

Since the phase shift is negative, hence the shift is to the left.

RELAXING NOICE
Relax