What is the phase shift of the function y = -cos(3(x+pie/2))-81. Right 3pie/22. Left pie/63. Right pie/2 4. Left pie/2

The standard formula for expressing cosine functions is given as:
[tex]y=cos(Bx+C)+D[/tex]The phase shift is given as;
[tex]phase\text{ shift}=-\frac{c}{b}[/tex]Given the function
[tex]\begin{gathered} y=-cos(3(x+\frac{\pi}{2}))-8 \\ y=-cos(3x+\frac{3\pi}{2})-8 \end{gathered}[/tex]Compare with the general function
C = 3pi/2
B = 3
Find the phase shift
[tex]\begin{gathered} Phase\text{ shift}=\frac{-\frac{3\pi}{2}}{3} \\ Phase\text{ shift}=-\frac{3\pi}{6} \\ Phase\text{ shift}=-\frac{\pi}{2} \end{gathered}[/tex]Since the phase shift is negative, hence the shift is to the left.