Determine the domain and range of the piece wise function. Then write an equation for the function. The domain of the function is [_,_].The range of the function is (_,_).What is the equation of the function?

Determine the domain and range of the piece wise function Then write an equation for the function The domain of the function is The range of the function is Wha class=

Respuesta :

Let:

[tex]\begin{gathered} (x1,y1)=(-10,2) \\ (x2,y2)=(-2,10) \\ m=\frac{10-2}{-2-(-10)}=\frac{8}{8}=1 \end{gathered}[/tex]

so:

[tex]\begin{gathered} y-y1=m(x-x1) \\ y-2=1(x-(-10)) \\ y-2=1(x+10) \\ y-2=x+10 \\ y=x+12 \end{gathered}[/tex]

----

Let:

[tex]\begin{gathered} (x1,y1)=(0,-6) \\ (x2,y2)=(5,4) \\ m=\frac{4-(-6)}{5-0}=\frac{10}{5} \\ m=2 \end{gathered}[/tex]

so:

[tex]\begin{gathered} y-y1=m(x-x1) \\ y-(-6)=2(x-0) \\ y+6=2x \\ y=2x-6 \end{gathered}[/tex]

Therefore, the function is:

[tex]f(x)=\begin{cases}x+12,_{\text{ }}if_{\text{ }}-10\le x<2 \\ 2,_{\text{ }}if_{\text{ }}-2\le x\le0 \\ 2x-6,_{\text{ }}if_{\text{ }}0The domain of the function is:

[tex]\begin{gathered} -10\le x\le5 \\ \lbrack-10,5\rbrack \end{gathered}[/tex]

The range of the function is:

[tex]\begin{gathered} -6
RELAXING NOICE
Relax