steph curry is a 91% free-throw shooter. suppose that he shoots 10 free throws in a basketball game. assume his free-throw shots are independent. (a) how many free throws would you expect steph curry to make in this game? (b) what is the probability that he makes exactly 8 free throws? (c) what is the probability that he makes at least 8 free throws?

Respuesta :

The probability that he makes at least 8 free throws is 0.9459

What is Probability?

Calculating the likelihood of experiments happening is one of the branches of mathematics known as probability. We can determine everything from the likelihood of receiving heads or tails when tossing a coin to the likelihood of making a research blunder, for instance, using a probability. It is crucial to grasp this branch's most fundamental concepts in order to fully comprehend it, including the formula for computing probabilities in equiprobable sample spaces, the likelihood of two events joining together, the probability of the complementary event, etc.

It is given that:

[tex]\text { Let } p=0.91 \text { and } n=10[/tex]

Expected number of shots [tex], $E(x)=n p=(10)(0.91)=9$[/tex]

Now, we use Binomial Distribution [tex]p(X=x)=n_{c_x} p^x(1-p)^{n-x}[/tex]

with the parameters [tex]n=10$and $p=0.91$[/tex]

Let X be the number of free throws he made

Therefore,

[tex]$p(X \geq 8)$$\begin{aligned}&=p(X=8)+p(X=9)+p(X=10) \\&=10 c_8(0.91)^8(1-0.91)^{10-8}+1 c_{c_9}(0.91)^9(1-0.91)^{10-9}+10_{c_{10}}(0.91)^{10}(1-0.91)^{10-10} \\&=0.1714+0.3851+0.3894 \\&=0.9459\end{aligned}$[/tex]

Hence, The probability that he makes at least 8 free throws is 0.9459

To learn more about probability, visit:

brainly.com/question/13604758

#SPJ4

RELAXING NOICE
Relax