Respuesta :

Solution:

We want to solve the following expression:

[tex]\cos (\sin ^{-1}(\frac{4}{5}))[/tex]

Let us denote by epsilon the argument of cosine function:

[tex]\epsilon=\sin ^{-1}(\frac{4}{5})[/tex]

now, applying the sine function to both sides of the equation, we get:

[tex]\sin (\epsilon)=\frac{4}{5}=\frac{\text{ opposite side}}{hypotenuse}[/tex]

this equation can be represented in a right triangle like this:

now, we want to find:

[tex]\cos (\sin ^{-1}(\frac{4}{5}))=\cos (\epsilon)=\frac{\text{adjacent side}}{hypotenuse}=\frac{x}{5}[/tex]

Note that we just need to find x to solve this problem. Then, to find x, we can apply the pythagorean theorem:

According to the right triangle, we get:

[tex]x=\sqrt[]{5^2-4^2}\text{ =3}[/tex]

thus, we can conclude that:

[tex]\cos (\sin ^{-1}(\frac{4}{5}))=\cos (\epsilon)=\frac{\text{adjacent side}}{hypotenuse}=\frac{x}{5}=\frac{3}{5}[/tex]

So that, the correct answer is:

[tex]\cos (\sin ^{-1}(\frac{4}{5}))=\frac{3}{5}[/tex]

Ver imagen KizzyI36164
RELAXING NOICE
Relax