Step 1
Given;
[tex]\begin{gathered} \text{Principal(p)= \$375000} \\ \text{First rate = 8\%=}\frac{8}{100}=0.08 \\ \text{Second rate = 20\%= }\frac{20}{100}=0.2 \\ \text{Time}=\frac{90}{365}=\frac{18}{73} \end{gathered}[/tex]Required; To find the difference in interest between the two periods.
Step 2
State the formula for simple interest
[tex]A=P(1+rt)[/tex]Step 3
Find the interest when the rate is 8%
[tex]\begin{gathered} A=375000(1+(0.08\times\frac{18}{73}) \\ A=375000(1+\frac{36}{1825}) \\ A=\text{\$}382397.26 \end{gathered}[/tex]Therefore the interest is given as;
[tex]A-P=382397.26-375000=\text{\$}7397.26[/tex]Step 4
Find the interest in 1980 with a 20% rate
[tex]\begin{gathered} A=375000(1+(0.2\times\frac{18}{73}) \\ A=\text{\$}393493.15 \end{gathered}[/tex]The interest is given as;
[tex]A-p=393493.15-375000=\text{\$}18493.15\text{ }[/tex]Step 5
Find the difference in interest between the two rates.
[tex]\text{\$}18493.15-\text{\$}7397.26=\text{\$}11095.89[/tex]Hence, the difference in interest between the two rates = $11095.89