Shown is the graph of the function y = -√x-1+5.10Determine the end behavior of the function.10

Given
The function,
[tex]y=-\sqrt{x-1}+5[/tex]To find:
The end behaviour of the function.
Explanation:
It is given that,
[tex]y=-\sqrt{x-1}+5[/tex]And, the graph of the above function is,
That implies,
From the graph,
As x tends to 1,
[tex]\begin{gathered} y=-\sqrt{1-1}+5 \\ y=-\sqrt{0}+5 \\ y=5 \end{gathered}[/tex]Also,
[tex]\begin{gathered} y=-\sqrt{x-1}+5 \\ \Rightarrow y-5=-\sqrt{x-1} \\ \Rightarrow(y-5)^2=x-1 \end{gathered}[/tex]Then,
As x tends to infinity,
[tex]\begin{gathered} (y-5)^2=\infty \\ y-5=\infty \\ y\rightarrow\infty \end{gathered}[/tex]Hence, the answer is option C),
[tex]\begin{gathered} x\rightarrow\infty,\text{ }y\rightarrow\infty \\ x\rightarrow1,\text{ }y\rightarrow5 \end{gathered}[/tex]