Given
The universal set and subset is given
[tex]\begin{gathered} U=\lbrace f,m,q,r,s,y\rbrace \\ B=\lbrace f,q,s,y\rbrace \\ C=\lbrace f,r,s\rbrace \end{gathered}[/tex]Explanation
a. To determine the
[tex](B\cap C)^{\prime}[/tex]
To find the compliment of B intersection C,
[tex](B\cap C)^{\prime}=B^{\prime}\cup C^{\prime}[/tex]
[tex](B\cap C)^{\prime}=\lbrace m,r\rbrace\cup\lbrace m,q,y\rbrace[/tex]
Then the compliment of B intersection C.
[tex](B\cap C)^{\prime}=\lbrace m,q,r,y\rbrace[/tex]
b. To determine the
[tex]\begin{gathered} B^{\prime}\cup C=\lbrace m,r\rbrace\cup\lbrace f,r,s\rbrace \\ B^{\prime}\cup C=\lbrace m,r,f,s\rbrace \end{gathered}[/tex]Answer
Hence the answers are
[tex]\begin{gathered} a.\lbrace m,q,r,y\rbrace \\ b.\lbrace m,r,f,s\rbrace \end{gathered}[/tex]