We have a geometric sequence, with a(2) = 5 and r = -2.
We can write geometric sequences in general as:
[tex]\mleft\lbrace a,a\cdot r,a\cdot r^2,a\cdot r^3,\ldots,a\cdot r^{n+1},\ldots\mright\rbrace[/tex]So we can write the second term, a(2), as:
[tex]a(2)=a\cdot r[/tex]As we know a(2) and r, we can calculate the base "a" as:
[tex]a=\frac{a(2)}{r}=\frac{5}{-2}=-\frac{5}{2}[/tex]Any term can be calculated as:
[tex]a(n)=a\cdot r^{n-1}=(-\frac{5}{2})\cdot(-2)^{n-1}[/tex]Then, the eight term a(8) can be then calculated as:
[tex]a(8)=(-\frac{5}{2})\cdot(-2)^{8-1}=(-\frac{5}{2})\cdot(-2)^7=(-\frac{5}{2})\cdot(-128)=320[/tex]Answer: a(8) = 320