We want to find the solutions for the following inequality
[tex]-\frac{2}{5}x-9<\frac{9}{10}[/tex]First, we can add 9 on both sides of the inequality
[tex]\begin{gathered} -\frac{2}{5}x-9+9<\frac{9}{10}+9 \\ -\frac{2}{5}x<\frac{9}{10}+\frac{90}{10} \\ -\frac{2}{5}x<\frac{99}{10} \end{gathered}[/tex]Now, we can multiply both sides by (-1). When we multiply an inequality by a negative number, it changes the sign
[tex]\begin{gathered} -\frac{2}{5}x\cdot(-1)<\frac{99}{10}\cdot(-1) \\ \frac{2}{5}x>-\frac{99}{10} \end{gathered}[/tex]Multiplying both sides by 5, we have
[tex]\begin{gathered} \frac{2}{5}x\cdot5>-\frac{99}{10}\cdot5 \\ 2x>-\frac{99}{2} \end{gathered}[/tex]And finally, dividing both sides by 2
[tex]\begin{gathered} 2x\cdot\frac{1}{2}>-\frac{99}{2}\cdot\frac{1}{2} \\ x>-\frac{99}{4} \end{gathered}[/tex]