The composite shape shown in the picture can be divided into three forms:
1) An equilateral triangle with side length a=22ft
The area of an equilateral triangle can be determined using the following formula:
[tex]A_1=\frac{a^2\sqrt[]{3}}{4}[/tex]Replace it with a=22ft
[tex]\begin{gathered} A_1=\frac{22^2\sqrt[]{3}}{4} \\ A_1=\frac{484\sqrt[]{3}}{4} \\ A_1=209.58ft^2 \end{gathered}[/tex]2) A square with side length a=22ft
The area of the square can be determined as the square of the side length:
[tex]\begin{gathered} A_2=a^2 \\ A_2=22^2 \\ A_2=484ft^2 \end{gathered}[/tex]3) A triangle with height 22ft and base 16ft
The area of the triangle can be calculated as half the product of the base and the height:
[tex]\begin{gathered} A_3=\frac{1}{2}bh \\ A_3=\frac{1}{2}22\cdot16 \\ A_3=176ft^2 \end{gathered}[/tex]The total area of the composite shape is equal to the sum of the three areas:
[tex]\begin{gathered} TA=A_1+A_2+A_3 \\ TA=209.58+484+176 \\ TA=869.58ft^2 \end{gathered}[/tex]