Given:
The number of bacteria in a refrigerated food product is given by:
[tex]N(T)=29T^2-160T+77[/tex]
where (T) is the temperature of the food.
When the food is removed from the refrigerator, the temperature is given by:
[tex]T(t)=8t+1.2[/tex]
where (t) is the time in hours.
We will find the composite function N(T(t))
So, we will substitute the function (T) into the function (N):
[tex]N(T(t))=29(8t+1.2)^2-160(8t+1.2)+77[/tex]
Expand the function then simplify it:
[tex]\begin{gathered} N(T(t))=29(64t^2+19.2t+1.44)-160(8t+1.2)+77 \\ N(T(t))=1856t^2+556.8t+41.76-1280t-192+77 \\ \\ N(T(t))=1856t^2-723.2t-73.24 \end{gathered}[/tex]
So, the composite function will be:
[tex]N(T(t))=1,856t^{2}-723.2t-73.24[/tex]
Now, we will find the number of bacteria after 4.1 hours.
So, substitute t = 4.1 into the composite function
[tex]\begin{gathered} N(T(t)=1856(4.1)^2-723.2(4.1)-73.24 \\ N(T(t))=28161 \end{gathered}[/tex]
So, the answer will be:
The number of bacteria after 4.1 hours = 28161 bacteria