Respuesta :

Given:

Width of the rectangle=

[tex]w[/tex]

Length of a rectangle=

[tex]l=w+4[/tex]

Area of the rectangle=

[tex]A=50[/tex]

Required:

Width of the rectangle.

Answer:

Area of the rectangle=

[tex]\begin{gathered} A=l\times w \\ 50=(w+4)\times w \\ 50=w^2+4w \\ w^2+4w-50=0 \\ w=\frac{-4\pm\sqrt{16-4(1)(-50)}}{2} \\ w=\frac{-4\pm\sqrt{16+120}}{2} \\ w=-2+3\sqrt{6,}w=-2-3\sqrt{6} \end{gathered}[/tex]

Solving this equation by quadratic equation method we get,

[tex]w=-2+3\sqrt{6,}w=-2-3\sqrt{6}[/tex]

Final Answer:

The width of the rectangle is,

[tex]w=-2+3\sqrt{6,}w=-2-3\sqrt{6}[/tex]

RELAXING NOICE
Relax