Given:
• x = 0.00325 m
,• Diameter, D = 0.0433 m
,• Wavelength, λ = 525 nm
Let's find the maximum distance at which they could be resolved.
Let's first apply the formula for angular seperation:
[tex]\theta=\frac{1.22\lambda}{D}[/tex]Thus, we have:
[tex]\begin{gathered} \theta=\frac{1.22*525\times10^{-9}}{0.0433} \\ \\ \theta=\frac{6.405\times10^{-7}}{0.0433} \\ \\ \theta=1.4792\times10^{-5}\text{ rad} \end{gathered}[/tex]Now, to find the maximum possible distance, apply the formula:
[tex]d=\frac{x}{\theta}[/tex]Thus, we have:
[tex]\begin{gathered} d=\frac{0.00325}{1.4792\times10^{-5}} \\ \\ d=219.71\text{ m} \end{gathered}[/tex]Therefore, the maximum distance at which they could be resolved is 219.71 m.
ANSWER: