Respuesta :

Let:

[tex]\begin{gathered} (v1,t1)=(0,60) \\ (v2,t2)=(20,50) \end{gathered}[/tex]

So:

[tex]m=\frac{t2-t1}{v2-v1}=\frac{50-60}{20-0}=\frac{-10}{20}=-\frac{1}{2}[/tex]

Using the point-slope equation:

[tex]\begin{gathered} t-t1=m(v-v1) \\ t-60=-\frac{1}{2}(v-0) \\ t-60=-\frac{1}{2}v \\ t(v)=-\frac{1}{2}+60 \end{gathered}[/tex]

Since we have the equation now, let's find the speed corresponding to the elapse time of zero:

[tex]\begin{gathered} t(v)=0 \\ 0=-\frac{1}{2}v+60 \\ solve_{\text{ }}for_{\text{ }}v \\ -\frac{1}{2}v=-60 \\ v=-2\cdot(-60) \\ v=\frac{120m}{s} \end{gathered}[/tex]

RELAXING NOICE
Relax