O GRAPHS AND FUNCTIONSDetermining whether two functions are inverses of each other

1) Let's begin with that by finding the composite functions.
2) So, let's begin with the ones to the left:
[tex]\begin{gathered} (f(g(x))=\frac{1}{2\cdot\frac{1}{2x}}=\frac{1}{\frac{1}{x}}=x \\ \\ (g(f(x))=\frac{1}{2\cdot\frac{1}{2x}}=\frac{1}{\frac{1}{x}}=x \\ ----- \\ \\ f^(x)=\frac{1}{2x} \\ \\ y=\frac{1}{2x} \\ \\ x=\frac{1}{2y} \\ \\ 2yx=1 \\ \\ 2y=\frac{1}{x} \\ \\ y=\frac{1}{x}\div\text{ 2} \\ \\ y=\frac{1}{2x} \end{gathered}[/tex]Hence, we can tell that:
3) Let's now proceed with that one on the right:
[tex]\begin{gathered} f\left(g\left(x\right)\right)=x+3+3\Rightarrow f(g(x))=x+6 \\ \\ g(f(x))=(x+3)+3\Rightarrow g(f(x))=x+6 \end{gathered}[/tex]And now the inverse:
[tex]\begin{gathered} f(x)=x+3 \\ \\ y=x+3 \\ \\ x=y+3 \\ \\ x-y=3 \\ \\ -y=3-x \\ \\ y=x-3 \\ \\ f^{-1}(x)=x-3 \end{gathered}[/tex]And then, the answer is: