Respuesta :

Solution:

Given the function below

[tex]f\left(x\right)=2x^3+x^2-5x+2[/tex]

To find the slope of a tangent, first find the first derivative, as shown below

[tex]\begin{gathered} \frac{d}{dx}\left(2x^3+x^2-5x+2\right) \\ \frac{dy}{dx}=3(2x^{3-1})+2(x^{2-1})-(5x^{1-1})+0 \\ \frac{dy}{dx}=6x^2+2x-5 \end{gathered}[/tex]

At a given point (-1.5,5), the slope of a tangent of this function is

[tex]\begin{gathered} \frac{dy}{dx}=6x^2+2x-5 \\ =6\left(-1.5\right)^2+2\left(-1.5\right)-5 \\ =13.5-3-5=13.5-8=5.5 \\ \frac{dy}{dx}=5.5 \end{gathered}[/tex]

Hence, the slope of a tangent of the function is 5.5

RELAXING NOICE
Relax