Answer:
[tex]V=15441\text{ cubic inches}[/tex]Step-by-step explanation;
The volume for a sphere is represented as:
[tex]V=\frac{4}{3}\pi\cdot r^3^{}[/tex]Given the material, use the formula for the superficial area of the sphere:
[tex]\begin{gathered} \text{3000=}4\cdot\pi\cdot r^2 \\ \text{ } \end{gathered}[/tex]Solve for r:
[tex]\begin{gathered} r=\sqrt[]{\frac{3000}{4\pi}} \\ r=15.45 \end{gathered}[/tex]Therefore, the volume of each sphere would be:
[tex]\begin{gathered} V=\frac{4}{3}(3.14)(15.45)^3 \\ V=15441\text{ cubic inches} \end{gathered}[/tex]