then factoring the equation
[tex]\begin{gathered} x^2+3x-4x-12=0 \\ (x^2+3x)+(-4x-12)=0 \\ x(x+3)-4(x+3)=0 \\ (x+3)(x-4)=0 \\ x+3=0\quad \mathrm{or}\quad \: x-4=0 \end{gathered}[/tex]so
[tex]\begin{gathered} x+3=0 \\ x+3-3=0-3 \\ x=-3 \\ \text{and} \\ x-4=0 \\ x-4+4=0+4 \\ x=4 \end{gathered}[/tex]solution:
x = -3
x = 4