I. First we will find the value of a
[tex]\log _3a=3[/tex][tex]\begin{gathered} (\log _3a)^3=3^3 \\ a=27 \end{gathered}[/tex]
II. Then we need to find b
[tex]a^b=531441[/tex]
we substitute the value of a
[tex]\begin{gathered} 27^b=531441 \\ \end{gathered}[/tex]
we apply natural logarithm on both sides
[tex]\begin{gathered} \ln (27)^b=\ln (531441) \\ b\ln (27)=\ln (531441) \\ b=\frac{\ln (531441)}{\ln (27)} \\ b=4 \end{gathered}[/tex]
The value of b is 4
b=4
III.
[tex]\log _4c=-2[/tex]
[tex](\log _4c)^4=\log _4(\frac{1}{16})[/tex]
[tex]c=\frac{1}{16}[/tex]
IV.
[tex]2^{-2d}=c[/tex][tex]2^{-2d}=\frac{1}{16}[/tex]
We will use the natural logarithm
[tex]\begin{gathered} \ln (2^{-2d})=\ln (\frac{1}{16}) \\ -2d\ln (2^{})=\ln (\frac{1}{16}) \\ d=\frac{\ln (\frac{1}{16})}{-2\ln (2)} \\ d=2 \end{gathered}[/tex]
V.
Then for e
[tex]\text{alog}_db^{3e}=864c[/tex]
Then we substitute
[tex]27\text{log}_24^{3e}=864(\frac{1}{16})[/tex]
we simplify
[tex]27\text{log}_24^{3e}=54[/tex][tex]\text{log}_24^{3e}=\frac{54}{27}[/tex][tex]\text{log}_24^{3e}=2[/tex][tex]\begin{gathered} (\text{log}_24^{3e})^2=2^2 \\ 4^{3e}=4 \\ 3e=1 \\ e=\frac{1}{3} \end{gathered}[/tex]
ANSWER
a=27
b=4
c=1/16
d=2
e=1/3