Respuesta :

EXPLANATION

Since we have the parabola:

[tex]f(x)=6x^2-54[/tex]

We first need to obtain the roots in order to compute the x-intercepts:

[tex]\mathrm{Add\: }54\mathrm{\: to\: both\: sides}[/tex][tex]6x^2-54+54=0+54[/tex]

Simplify:

[tex]6x^2=54[/tex][tex]\mathrm{Divide\: both\: sides\: by\: }6[/tex][tex]\frac{6x^2}{6}=\frac{54}{6}[/tex]

Simplify:

[tex]x^2=9[/tex]

For x^2 = f(a) the solutions are x= √f(a) :

[tex]x=\sqrt{9},\: x=-\sqrt{9}[/tex]

Computing the square root we get:

[tex]\mathrm{X\: Intercepts}\colon\: \mleft(3,\: 0\mright),\: \mleft(-3,\: 0\mright)[/tex]

b) Computing the vertex:

[tex]\mathrm{The\: vertex\: of\: an\: up-down\: facing\: parabola\: of\: the\: form}\: y=ax^2+bx+c\: \mathrm{is}\: x_v=-\frac{b}{2a}[/tex][tex]\mathrm{The\: parabola\: params\: are\colon}[/tex][tex]a=6,\: b=0,\: c=-54[/tex][tex]x_v=-\frac{b}{2a}[/tex][tex]x_v=-\frac{0}{2\cdot\:6}[/tex][tex]\mathrm{Simplify}\colon[/tex][tex]x_v=0[/tex]

Plugging in x_v to find the y_v value:

[tex]y_v=6\cdot\: 0^2-54[/tex]

Simplify:

[tex]y_v=-54[/tex][tex]\mathrm{Therefore\: the\: parabola\: vertex\: is}\colon[/tex][tex]\mleft(0,\: -54\mright)[/tex]

RELAXING NOICE
Relax