Respuesta :

4-2-To solve this problem we have to graph the functions so we have to find two points of each equations so for the first one:

if x=0

[tex]\begin{gathered} -8(0)+4y=12 \\ 4y=12 \\ y=\frac{12}{4} \\ y=3 \end{gathered}[/tex]

Now for y=0

[tex]\begin{gathered} -8(x)+4(0)=12 \\ x=\frac{12}{-8} \\ x=-1.5 \end{gathered}[/tex]

So the two coordinates of the first equation are (0, 3) and (-1.5, 0)

Now for the secon equation for x=0

[tex]\begin{gathered} -10(0)+5y=-10 \\ y=-\frac{10}{5} \\ y=2 \end{gathered}[/tex]

And for y=0

[tex]\begin{gathered} -10(x)+5(0)=-10 \\ x=\frac{-10}{-10} \\ x=1 \end{gathered}[/tex]

So the coordinates are: (0, 2) and (1, 0) So now we can graph the line and the solution will be the point where they intercept so:

The solution is mor o less (-0.5 , 2.5)

Ver imagen FrannyG270016
RELAXING NOICE
Relax