Explanation
The first step is to recreate the triangle using the given values.
We can find the value of angle C using the sine rule below.
[tex]\frac{\text{SinB}}{b}=\frac{\text{SinC}}{c}[/tex]
We insert the necessary parameters.
[tex]\begin{gathered} \frac{Sin42}{46}=\frac{\text{SinC}}{51} \\ Crossmultiply \\ 46SinC=Sin42\times51 \\ SinC=\frac{Sin42\times51}{46} \\ C=\sin ^{-1}0.7419 \\ C=47.9^0 \end{gathered}[/tex]
We can find the value of A using the sum of angles in a triangle.
[tex]\begin{gathered} A+B+C=180 \\ A+42+47.9=180 \\ A=180-42-47.9 \\ A=90.1 \end{gathered}[/tex]
We can find the side "a" using the cosine rule
[tex]\begin{gathered} a^2=b^2+c^2-2\text{bc}\times CosA \\ a^2=46^2+51^2-2\times46\times51\text{Cos}90.1 \\ a^2=2116+2601+8.1891 \\ a^2=4725.1891 \\ a^{}=\sqrt[]{4725.1891} \\ a=68.7 \end{gathered}[/tex]
Answer:
[tex]C=47.9^0;A=90.1^0;a=68.7[/tex]