The vertical component of the speed changes uniformly with time as follows:
[tex]v_y=v_{0y}-gt[/tex]The horizontal component of the speed remains constant:
[tex]v_x=v_{0x}[/tex]To find the initial values for the components of the speed, remember the following:
[tex]\begin{gathered} v_{0y}=v_0\sin (\theta) \\ v_{0x}=v_0\cos (\theta) \end{gathered}[/tex]Substitute the values for v₀ and θ:
[tex]\begin{gathered} v_{0y}=72.0\frac{m}{s}\times\sin (25º)=30.4\frac{m}{s} \\ v_{0x}=72.0\frac{m}{s}\times\cos (25º)=65.3\frac{m}{s} \end{gathered}[/tex]Since the projectile touches the ground at time t=8.95s, use that value to find the final vertical speed:
[tex]\begin{gathered} v_y=v_{0y}-gt \\ =(30.4\frac{m}{s})-(9.80\frac{m}{s^2})(8.95s) \\ =-57.3\frac{m}{s} \end{gathered}[/tex]The final speed of the projectile when it touches the ground is given by:
[tex]\begin{gathered} v=\sqrt[]{v^2_x+v^2_y} \\ =\sqrt[]{(65.3\frac{m}{s})^2+(-57.3\frac{m}{s})^2} \\ =86.8\frac{m}{s} \end{gathered}[/tex]Therefore, the speed of the projectile the moment it touches the ground, is:
[tex]86.8\frac{m}{s}[/tex]