Given:
[tex]Means,\text{ }\mu=57.4[/tex][tex]Standard\text{ deviation, }\sigma=5.1[/tex][tex]The\text{ sample size, n=46.}[/tex]Required:
We need to find the probability that the mean height of this sample will be greater than 57 inches,
[tex]P(x>57).[/tex]Explanation:
Consider the formula to find the z-score.
[tex]z=\frac{\mu-x}{\frac{\sigma}{\sqrt{n}}}[/tex][tex]Subst\text{itue }\mu=57.4\text{, }\sigma=5.1,\text{ n=46 and x=57 in the formula.}[/tex][tex]z=\frac{57-57.4}{\frac{5.1}{\sqrt{46}}}[/tex][tex]z=\frac{-0.4}{\frac{5.1}{\sqrt{46}}}[/tex][tex]z=-0.4\times\frac{\sqrt{46}}{5.1}[/tex][tex]z=-0.5319[/tex]From the z table, we get
[tex]P(x<57)=0.2974[/tex][tex]\text{We know that }P(x>57)=1-P(x<57).[/tex][tex]Substitut\text{e }P(x<57)=0.2974\text{ in the equation.}[/tex][tex]P(x>57)=1-0.2974.[/tex][tex]P(x>57)=0.7026.[/tex][tex]P(x>57)=0.703.[/tex]
Final answer:
The probability that the mean height of this sample will be greater than 57 inches is 0.703.