First box: Linear, constant, quadraticSecond box: monomial, trinomial, binomial Third box: 0, 1, 2

Given:
[tex](3x^2-x-7)-(5x^2-4x-2)+(x+3)(x+2)[/tex]We will simplify the expression as follows:
First, expand the last term which is (x+3)(x+2)
so,
[tex]=(3x^2-x-7)-(5x^2-4x-2)+(x^2+5x+6)[/tex]Second, expand by multiplying the sign in front of each parenthesis
[tex]=3x^2-x-7-5x^2+4x+2+x^2+5x+6[/tex]finally, Combine the like terms:
[tex]\begin{gathered} =(3x^2-5x^2+x^2)+(-x+4x+5x)+(-7+2+6) \\ \\ =-x^2+8x+1 \end{gathered}[/tex]So, the result is a quadratic polynomial with 3 terms
So, the answer will be as follows:
First box: Quadratic
Second box: trinomial
Third box: 2