Respuesta :

The volume of a sphere can be calculated as

[tex]V=\frac{4}{3}\pi r^3[/tex]

Where r is the radius of the sphere

We want to calculate half of the volume, then we must divide that volume by 2

[tex]V^{\prime}=\frac{1}{2}\frac{4}{3}\pi r^3[/tex]

Now we must find the radius of our sphere, the segment AB is the diameter of the sphere, and the radius is half od the diameter, then

[tex]r=\frac{AB}{2}=\frac{12}{2}=6[/tex]

Let's put it into our equation

[tex]\begin{gathered} V^{\prime}=\frac{1}{2}\left(\frac{4}{3}\right)(\pi)(r)^3 \\ \\ V^{\prime}=\frac{1}{2}\left(\frac{4}{3}\right)(\pi)(6)^3 \end{gathered}[/tex]

The problem says to use

[tex]\pi\approx\frac{22}{7}[/tex]

Then

[tex]V^{\prime}=\frac{1}{2}\left(\frac{4}{3}\right)\left(\frac{22}{7}\right)(6)^3[/tex]

Final answer:

The formula that can be used to calculate the volume of water inside the fish bowl is

[tex]V=\frac{1}{2}\left(\frac{4}{3}\right)\left(\frac{22}{7}\right)(6)^3[/tex]

RELAXING NOICE
Relax