The formula to be used for the question will be
[tex]F\mathrm{}V=P\mathrm{}V(1+R)^N[/tex]Where,
[tex]\begin{gathered} P\mathrm{}V=\text{PRESENT VALUE = \$205,000} \\ R=\text{rate = 4\%} \\ N=\text{ number of years=30} \end{gathered}[/tex]By substituting the values in the formula above, we will have that
[tex]\begin{gathered} F\mathrm{}V=\text{ \$205,000(1+}\frac{\text{4}}{100})^{30} \\ F\mathrm{}V=205,000(1+0.04)^{30} \\ F\mathrm{}V=205,000(1.04)^{30} \\ F\mathrm{}V=205,000(3.24339751) \\ F\mathrm{}V=\text{ \$664896.4896} \\ The\text{ future value therefore will be} \\ F\mathrm{}V=\text{ \$664,896} \end{gathered}[/tex]