Respuesta :

Given

To find the slope and length of each side.

Explanation:

It is given that,

[tex]H(-3,-2),G(2,-4),F(4,1),E(-1,3)[/tex]

Since,

[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]

Then,

[tex]\begin{gathered} Slope\text{ }of\text{ }HE=\frac{3-(-2)}{-1-(-3)} \\ =\frac{3+2}{-1+3} \\ =\frac{5}{2} \end{gathered}[/tex][tex]\begin{gathered} Slope\text{ }of\text{ }HG=\frac{-4-(-2)}{2-(-3)} \\ =\frac{-4+2}{2+3} \\ =-\frac{2}{5} \end{gathered}[/tex]

Also,

[tex]\begin{gathered} Slope\text{ }of\text{ }GF=\frac{1-(-4)}{4-2} \\ =\frac{1+4}{2} \\ =\frac{5}{2} \end{gathered}[/tex]

Since,

[tex]EF\perp GF[/tex]

Then,

[tex]Slope\text{ }of\text{ }EF=-\frac{2}{5}[/tex]

Also,

[tex]\begin{gathered} Length\text{ }of\text{ }HE=\sqrt{(-3-(-1))^2+(3-(-2))^2} \\ =\sqrt{(-3+1)^2+(3+2)^2} \\ =\sqrt{(-2)^2+5^2} \\ =\sqrt{4+25} \\ =\sqrt{29} \end{gathered}[/tex]

That implies,

[tex]\begin{gathered} Length\text{ }of\text{ }HE=Length\text{ }of\text{ }GF=\sqrt{29} \\ =5.39 \end{gathered}[/tex]

Also,

[tex]\begin{gathered} Length\text{ }of\text{ }HG=\sqrt{(-3-2)^2+(-2-(-4))^2} \\ =\sqrt{(-5)^2+(-2+4)^2} \\ =\sqrt{25+4} \\ =\sqrt{29} \\ =5.39 \end{gathered}[/tex]

Then,

[tex]Length\text{ }of\text{ }HG=Length\text{ }of\text{ }EF=5.39[/tex]

Hence,

[tex]undefined[/tex]

Ver imagen LysandraR495603
RELAXING NOICE
Relax