We are given the following expression
[tex]a^{3}-5g+\sqrt[]{34-30}+\frac{\sqrt[]{g+1}}{2}[/tex]whenever a=2 and g=3. What we should do, is replace the values of a and g and then operate accordingly. We will do this expression by expression and then operate eache term.
Consider the term a³. If a=2, then
[tex]a^{3}=2^{3}=8[/tex]in the case for 5g, if g=3, then
[tex]5\cdot g=5\cdot3=15[/tex]Now, let us analize sqrt(g+1), if g=3, then g+1=4. Then
[tex]\frac{\sqrt[]{g+1}}{2}=\frac{\sqrt[]{4}}{2}[/tex]in this case, we will always use positive square roots, so
[tex]\frac{\sqrt[]{g+1}}{2}=\frac{\sqrt[]{4}}{2}=\frac{2}{2}=1[/tex]Finally, we will calculate the remaining term
[tex]\sqrt[]{34-30}=\sqrt[]{4}=2[/tex]Then, the final procedure would be
[tex]8-15+2+1\text{ = 11-15 =-4}[/tex]So the final answer is -4