The most general form of a sne equaion is shown below
[tex]\begin{gathered} y=Asin(B(x-C))+D \\ A\rightarrow\text{ amplitude} \\ B\rightarrow period=\frac{2\pi}{B} \\ C\rightarrow\text{ horizontal shift} \\ D\rightarrow\text{ vertical shift} \end{gathered}[/tex]In our case, the midine of the function is at 8(8-2)/2=3; then, 2+3=5. The midline is at y=5.
Now, since at t=0 the function is at its lowest point,
[tex]\Rightarrow y=3sin(Bt-\frac{\pi}{2})+5[/tex]Finally, regarding the period of the function, since every 16 hours, the function completes a full cycle,
[tex]B=\frac{2\pi}{16}[/tex]Therefore,
[tex]y=3sin(\frac{2\pi}{16}t-\frac{\pi}{2})+5[/tex]