Given:
[tex]\begin{gathered} 2x+y=-3..............(1) \\ 8x+4y=-15..............(2) \end{gathered}[/tex]To find:
The solutions
Explanation:
Multiplying the equation (1) by 4, get
[tex]8x+4y=-12..............(3)[/tex]Subtract (3) from (2), we get
[tex]\begin{gathered} \begin{equation*} 8x+4y=-15 \end{equation*} \\ (-)8x+(-)4y=(-)-12 \\ -------- \\ 0=-3 \end{gathered}[/tex]But,
[tex]0\ne-3[/tex]Therefore, the system has no solutions.
That is,
The system is inconsistent.
Final answer: Option d.
Inconsistent.