Answer:
The value of n is;
[tex]n=13[/tex]Explanation:
Given the equation;
[tex](\frac{3^{8^{}}}{3^{-5}})=3^n[/tex]Applying the rules of indices;
[tex]\frac{1}{x^m}=x^{-m}[/tex]we have;
[tex]\begin{gathered} (\frac{3^{8^{}}}{3^{-5}})=3^n \\ (3^{8^{}}\cdot3^{-(-5)})=3^n \\ (3^{8^{}}\cdot3^5)=3^n \\ 3^{8+5}=3^n \\ 3^{13}=3^n \end{gathered}[/tex]Therefore, since the base are equal, then the value of n is;
[tex]n=13[/tex]