I need some help on the Math equation in the picture I took.

4.
[tex]h(t)=-t^2+32t+48[/tex]a)
We need to find the roots of the equation, so:
[tex]\begin{gathered} h(t)=0 \\ so\colon \\ -t^2+32t+48=0 \end{gathered}[/tex]Solve for t using quadratic formula:
[tex]\begin{gathered} t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ _{\text{ }}where\colon \\ a=-1 \\ b=32 \\ c=48 \\ so\colon \\ t=\frac{-32\pm\sqrt[]{1024+192}}{-2} \\ so\colon \\ t1=\frac{-32+8\sqrt[]{19}}{-2} \\ t2=\frac{-32-8\sqrt[]{19}}{-2} \end{gathered}[/tex]So, the total time T is:
[tex]T=t2=33.436[/tex]Answer:
33.436 s
b)
We need to evaluate the function for t = 1:
[tex]\begin{gathered} h(1)=-(1)^2+32(1)+48 \\ h(1)=79ft \end{gathered}[/tex]
Answer:
79ft
c)
The initial height is the height of the ball for t = 0, so:
[tex]\begin{gathered} t=0 \\ h(0)=-0^2+32(0)+48 \\ h(0)=48ft \end{gathered}[/tex]Answer:
48ft