The binomial can be expanded using the formula:
[tex](a+b)^n=\sum ^n_{k\mathop=0}\frac{n!}{(n-k)!k!}a^{n-k}b^k[/tex]For the binomial (x³+2/x)⁸, we have:
n = 8
a = x³
b = 2/x
So, the constant term is the one for which:
[tex]\mleft(x^3\mright)^{8-k}\mleft(\frac{2}{x}\mright)^k=\text{ constant}[/tex]This happens for k = 6:
[tex]a^{n-k}b^k=(x^3)^{8-6}\mleft(\frac{2}{x}\mright)^6=x^6\cdot\frac{2^6}{x^6}=2^6=64[/tex]The, for k = 6, we have:
[tex]\frac{n!}{(n-k)!k!}=\frac{8!}{2!6!}=\frac{8\cdot7\cdot6!}{2\cdot1\cdot6!}=\frac{56}{2}=28[/tex]Thus, the constant term in the expansion of the binomial is:
[tex]\frac{n!}{(n-k)!k!}a^{n-k}b^k=28\cdot64=1792[/tex]Therefore, the answer is 1792.