Respuesta :

The binomial can be expanded using the formula:

[tex](a+b)^n=\sum ^n_{k\mathop=0}\frac{n!}{(n-k)!k!}a^{n-k}b^k[/tex]

For the binomial (x³+2/x)⁸, we have:

n = 8

a = x³

b = 2/x

So, the constant term is the one for which:

[tex]\mleft(x^3\mright)^{8-k}\mleft(\frac{2}{x}\mright)^k=\text{ constant}[/tex]

This happens for k = 6:

[tex]a^{n-k}b^k=(x^3)^{8-6}\mleft(\frac{2}{x}\mright)^6=x^6\cdot\frac{2^6}{x^6}=2^6=64[/tex]

The, for k = 6, we have:

[tex]\frac{n!}{(n-k)!k!}=\frac{8!}{2!6!}=\frac{8\cdot7\cdot6!}{2\cdot1\cdot6!}=\frac{56}{2}=28[/tex]

Thus, the constant term in the expansion of the binomial is:

[tex]\frac{n!}{(n-k)!k!}a^{n-k}b^k=28\cdot64=1792[/tex]

Therefore, the answer is 1792.

RELAXING NOICE
Relax