Respuesta :

Answer:

x = 3

Explanations:

Given the indices expression

[tex]54(\frac{1}{3})^x=2[/tex]

Divide both sides of the equation by 54 to have:

[tex]\begin{gathered} \frac{54}{54}(\frac{1}{3})^x=\frac{\cancel{2}}{\cancel{54}} \\ (\frac{1}{3})^x=\frac{1}{27} \\ \end{gathered}[/tex]

Write in the inverse form to have:

[tex]\begin{gathered} 3^{-x}=\frac{1}{3^3} \\ 3^{-x}=3^{-3} \end{gathered}[/tex]

Canceling the base

[tex]\begin{gathered} \cancel{3}^{-x}=\cancel{3}^{-3} \\ -x=-3 \\ x=3 \end{gathered}[/tex]

Hence the value of x from the given equation is 3

RELAXING NOICE
Relax