Answer: The width is x + 4
Explanation
• The area (,A,) is:
[tex]A=x^2+11x+28[/tex]• The length (,l,) is:
[tex]l=x+7[/tex]The formula for the area of a rectangle is:
[tex]A=l\times w[/tex]where w represents the width.
Then, to get the width we have to isolate it in the formula:
[tex]w=\frac{A}{l}[/tex]Replacing the expressions given:
[tex]w=\frac{x^2+11x+28}{x+7}[/tex]To simplify this expression we can factor the numerator by finding two numbers that when added equal 11, and when multiplied equal 28. For example, 4 and 7:
[tex]4+7=11[/tex][tex]4\times7=28[/tex]Then, the expression is:
[tex]w=\frac{\left(x+4\right)\left(x+7\right)}{x+7}[/tex]Simplifying:
[tex]w=(x+4)\frac{(x+7)}{x+7}[/tex][tex]w=(x+4)\times1[/tex]Then the width is x + 4.