Let
[tex]\begin{gathered} x=\text{ the amount invested in fund b} \\ m=\text{ the profit from the fund a investment} \\ n=\text{ the profit from the fund b investment} \end{gathered}[/tex]Therefore,
[tex]\frac{m}{8000}=\frac{6}{100}[/tex]Hence,
[tex]m=\frac{6}{100}\times8000=6\times80=\text{ \$480}[/tex][tex]\begin{gathered} \text{ Also} \\ n=0.02x------(1) \\ \frac{m+n}{8000+x}=0.03 \\ \text{therefore} \\ \frac{n+480}{8000+x}=0.03 \end{gathered}[/tex]Thus
[tex]n+480=0.03(8000+x)-----------------(2)[/tex]Substituting equation(1) into equation(2), we have
[tex]\begin{gathered} 0.02x+480=0.03(8000+x) \\ 0.02x+480=240+0.03x \\ \text{ Thus} \\ 0.03x-0.02x=480-240 \\ 0.01x=240 \\ x=\frac{240}{0.01}=2400 \end{gathered}[/tex]Hence, the amount he invested is $2400