Respuesta :

Starting from the equation:

[tex]\frac{1}{2}(x+2)-\frac{1}{3}(x-1)=\frac{1}{2}(x+1)[/tex]

Notice that the coefficients of the binomials are 1/2, -1/3 and 1/2. The least common multiple of 2 and 3 is 6. Multiply both sides of the equation by 6 to get rid of all the denominators:

[tex]\begin{gathered} 6\times\lbrack\frac{1}{2}(x+2)-\frac{1}{3}(x-1)\rbrack=6\times\lbrack\frac{1}{2}(x+1)\rbrack \\ \Rightarrow6\times\frac{1}{2}(x+2)-6\times\frac{1}{3}(x-1)=6\times\frac{1}{2}(x+1) \\ \Rightarrow3(x+2)-2(x-1)=3(x+1) \end{gathered}[/tex]

Use the distributive property to expand all the parentheses:

[tex]\begin{gathered} \Rightarrow3x+3\times2-2x-2\times-1=3x+3\times1 \\ \Rightarrow3x+6-2x+2=3x+3 \end{gathered}[/tex]

Combine like terms on the left member of the equation:

[tex]undefined[/tex]

RELAXING NOICE
Relax