Respuesta :

The question has to do with exponential growth function

[tex]\begin{gathered} \text{Let the expeonential growth function be } \\ p=p_{0^{}}e^{kt}------------(1) \\ \text{where p}_0=2000\text{ (initial population)} \\ t=430 \\ k=\frac{\ln2}{430} \\ k=0.001612 \end{gathered}[/tex][tex]\begin{gathered} Putk=0.001612,p_o=2000\text{ into equation (1) above} \\ p=p_{0^{}}e^{kt} \\ p=2000e^{0.001612(t)} \\ p=2000e^{0.001612t} \\ \text{When the time t is 860 hours} \\ p=2000e^{0.001612(860)} \\ p=2000e^{1.38632} \\ p=2000(4) \\ p=8000 \end{gathered}[/tex]

Hence , the population after 860 hours will be 8000

RELAXING NOICE
Relax