To solve this question, use the Binomial probability formula.
The formula is given by
[tex]^nC_xp^x(1-p)^{n-x}[/tex]Where:
n = the number of trials
x = the sample we aim to try
p = the probability of success
In this question:
n = 16
x = 9
p = 0.5
Substituting in the equation:
[tex]\begin{gathered} ^nC_xp^x(1-p)^{n-x} \\ ^{16}C_9*0.5^9(1-0.5)^{16-9} \\ \end{gathered}[/tex]And the combination formula:
[tex]^nC_x=\frac{n!}{(n-x)!*x!}[/tex]Then:
[tex]\begin{gathered} \frac{16!}{(16-9)!*9!}*0.5^9(1-0.5)^{16-9} \\ \frac{16!}{7!*9!}*0.5^9*0.5^7 \\ 11440*0.00195*0.0078 \\ =0.1746 \end{gathered}[/tex]Answer: The probability is 0.1746.