Given the equation:
[tex]\frac{1}{2}y=8x+3[/tex]Rewrite the equation in slope intercept form:
y = mx + b
Multiply both through by 2
[tex]\begin{gathered} \frac{1}{2}y\ast2=\text{ }8x\ast2\text{ + 3}\ast2 \\ \\ y\text{ = 16x + 6} \end{gathered}[/tex]The slope of this line is 16.
therefore, the slope of the line perperndicular to it will be it's inverse:
[tex]-\frac{1}{16}[/tex]The perpendicular line has the points:
(x, y) ===> (-8, 0)
We have:
y = mx + b
[tex]0\text{ =-}\frac{1}{16}(-8)+b[/tex]Solve for b which is the y-intercept:
[tex]\begin{gathered} 0\text{ = }\frac{1}{2}+b \\ \\ b\text{ = -}\frac{1}{2} \end{gathered}[/tex]Since the y intercept is -½
slope = -1/16
The equation of the line in point slope form:
(y - y1) = m(x - x1)
[tex](y\text{ - 0) = -}\frac{1}{16}(x\text{ + 8)}[/tex]Therefore, the equation of the perpendicular line in slope intercept is:
[tex]y\text{ = -}\frac{1}{16}x\text{ - }\frac{1}{2}[/tex]