We will have the following:
A) From this we will have that the angle will be given by:
[tex]\begin{gathered} 9km/h-(12km/h)sin(\theta)=0\Rightarrow sin(\theta)=\frac{9km/h}{12km/h} \\ \\ \Rightarrow\theta=sin^{-1}(\frac{3}{4})\Rightarrow\theta=48.59037789... \\ \\ \Rightarrow\theta\approx48.6 \end{gathered}[/tex]So, it must point approximately 48.6° upstream.
B) We will determine the time it takes to cross to the other side as follows:
First, we determine speed used to move to the other side:
[tex]\begin{gathered} v_y=(12km/h)cos(sin^{-1}(\frac{3}{4}))\Rightarrow v_y=7.937253933...km/h \\ \\ \Rightarrow v_y\approx7.9km/h \end{gathered}[/tex]So, the time it will take to cross to the other side will be:
[tex]\begin{gathered} t\approx\frac{(1.6km)(1h)}{(7.9km)}\Rightarrow t\approx\frac{19}{79}h \\ \\ \Rightarrow t\approx0.2h \end{gathered}[/tex]So, it will take approximately 0.2 hours; that is approximately 12 minutes.