Explanation
Step 1
Pyramid:
the volume of a pyramid with square base is given by:
[tex]\text{Volume}_{pyramid}=\frac{1}{3}(length^2\text{)}\cdot\text{heigth}[/tex]then, let
heigth=12 ft
length=10 ft
now, replace.
[tex]\begin{gathered} \text{Volume}_{pyramid}=\frac{1}{3}(length^2\text{)}\cdot\text{heigth} \\ \text{Volume}_{pyramid}=\frac{1}{3}((10ft)^2\text{)}\cdot\text{12 ft} \\ \text{Volume}_{pyramid}=\frac{1}{3}1200ft^3 \\ \text{Volume}_{pyramid}=400ft^3 \end{gathered}[/tex]Step 2
Cone:
the volume of a cone is given by:
[tex]\text{Volume}_{cone}=\frac{1}{3}(\pi\cdot radius^2)\cdot\text{ heigth}[/tex]then, Let
heigth= 8 in
radius= 6 in
now, replace.
[tex]\begin{gathered} \text{Volume}_{cone}=\frac{1}{3}(\pi\cdot radius^2)\cdot\text{ heigth} \\ \text{Volume}_{cone}=\frac{1}{3}(\pi\cdot(6in)^2)\cdot\text{ 8 in} \\ \text{Volume}_{cone}=\frac{1}{3}(\pi\cdot36in^2)\cdot8\text{ in} \\ \text{Volume}_{cone}=\frac{1}{3}(288\pi)In^3 \\ \text{Volume}_{cone}=96In^3 \end{gathered}[/tex]I hope this helps you