We have a deposit of $4000 at the end of each year.
The rate is 5% compounded annually (r = 0.05).
The number of periods is n = 10.
We have to calculate the present value of the annuity.
We will use the formula:
[tex]PV=C\cdot\frac{1-(1+r)^{-n}}{i}[/tex]If we replace with our data, we get:
[tex]\begin{gathered} PV=4000\cdot\frac{1-(1+0.05)^{-10}}{0.05} \\ PV=4000\cdot\frac{1-1.05^{-10}}{0.05} \\ PV=4000\cdot\frac{1-\frac{1}{1.05^{10}}}{0.05} \\ PV=4000\cdot7.72173492918481251283 \\ PV\approx30887 \end{gathered}[/tex]Now, we have to calculate the interest.