Given :
Principal P= $52000
Interest rate r=12.5 %
Let x be the number of yers
The worth p(x) is $30000 after x years.
The math model for worth is
[tex]P(x)=P(1-\frac{r}{100})^x[/tex]Substitute P(x)=30000, P=52000, r=12.5, we get
[tex]30000=52000(1-\frac{12.5}{100})^x[/tex][tex]30000=52000(\frac{100}{100}-\frac{12.5}{100})^x[/tex][tex]30000=52000(\frac{100-12.5}{100})^x[/tex][tex]30000=52000(\frac{87.5}{100})^x[/tex][tex]30000=52000(0.875)^x[/tex]Dividing both sides by 52000, we get
[tex]\frac{30000}{52000}=\frac{52000}{52000}(0.875)^x[/tex][tex]0.577=0.875^x[/tex]We know that
[tex]b^x=y\text{ then }log_by=x[/tex]Here b=0.875 and y=0.577.
[tex]\log _{0.875}0.577=y[/tex]Using the change base formula.
[tex]\log _ax=\frac{\log _bx}{\log _ba}[/tex]Take b=10, and substitute a=0.875 and x=0.577, we get
[tex]\log _{0.875}0.577=\frac{\log _{10}0.577}{\log _{10}0.875}[/tex][tex]\text{ Use }\log _{10}0.577=-0.238\text{ and }\log 0.875=-0.058.[/tex][tex]\log _{0.875}0.577=\frac{-0.238}{-0.058}=4.103[/tex]Taking the nearest whole number.
[tex]\log _{0.875}0.577=4[/tex]Hence the number of years =4.