Respuesta :

Answer

[tex]y=6x+9[/tex]

Explanation

Given

[tex]y=x^2+6x+9[/tex]

The slope of the tangent is the 1st derivative, thus we have to calculate it:

[tex]y^{\prime}=2x+6(1)+0[/tex][tex]y^{\prime}=2x+6[/tex]

Then, we have to set the equation to 6 as it is the slope:

[tex]6=2x+6[/tex][tex]2x=6-6[/tex][tex]2x=0[/tex][tex]x=0[/tex]

Then, if we calculate the value of y when x = 0 in the given equation:

[tex]y=0^2+6(0)+9[/tex][tex]y=9[/tex]

By using this point and the slope-intercept form of the equation of the line (y = mx+b) we get:

[tex]9=6(0)+b[/tex][tex]9=b[/tex][tex]b=9[/tex]

Finally, the equation is:

[tex]y=6x+9[/tex]

RELAXING NOICE
Relax