Answer
[tex]y=6x+9[/tex]Explanation
Given
[tex]y=x^2+6x+9[/tex]The slope of the tangent is the 1st derivative, thus we have to calculate it:
[tex]y^{\prime}=2x+6(1)+0[/tex][tex]y^{\prime}=2x+6[/tex]Then, we have to set the equation to 6 as it is the slope:
[tex]6=2x+6[/tex][tex]2x=6-6[/tex][tex]2x=0[/tex][tex]x=0[/tex]Then, if we calculate the value of y when x = 0 in the given equation:
[tex]y=0^2+6(0)+9[/tex][tex]y=9[/tex]By using this point and the slope-intercept form of the equation of the line (y = mx+b) we get:
[tex]9=6(0)+b[/tex][tex]9=b[/tex][tex]b=9[/tex]Finally, the equation is:
[tex]y=6x+9[/tex]