The Solution.
Given the function below:
[tex]y=-0.018t^2+0.56t[/tex]We differentiate the function with respect to t and equate it to zero.
[tex]\frac{df}{dx}=2(-0.018)t^{2-1}+1(0.56)t^{1-1}=0[/tex][tex]\begin{gathered} -0.036t+0.56=0 \\ \text{Solving for t, we get} \\ -0.036t=-0.56 \\ \text{Dividing both sides by -0.036, we get} \\ t=\frac{-0.56}{-0.036}=15.555\approx15.56\text{ fe}ets \end{gathered}[/tex]So, the frog jumped about 15.56 feet far.
To find how high the frog jumped.
We shall substitute 15.56 for t in the given function.
[tex]undefined[/tex]