We will have the following:
First, we determine the middle point of the projectile travel:
[tex]R=\frac{(900m/s)^2sin(2\ast30)}{9.8m/s^2}\Rightarrow R=71579.65072...m[/tex]
So, the middle point will be approximately half of that, then the time will be determined as follows:
[tex]\begin{gathered} \frac{(900)^2sin(60)}{9.8\ast2}=900cos(30)t+\frac{1}{2}(0)t^2\Rightarrow900cos(30)t=\frac{(900)^2sin(60)}{9.8\ast2} \\ \\ \Rightarrow t=\frac{(900)^2sin(60)}{900cos(30)(9.8)(2)}\Rightarrow t=\frac{900sin(60)}{(9.8)(2)cos(30)} \\ \\ \Rightarrow t=\frac{2250}{49}s \end{gathered}[/tex]
So, the time it will take to reach the maximum height is approximately 45.918s.